If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x=61
We move all terms to the left:
x^2+4x-(61)=0
a = 1; b = 4; c = -61;
Δ = b2-4ac
Δ = 42-4·1·(-61)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{65}}{2*1}=\frac{-4-2\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{65}}{2*1}=\frac{-4+2\sqrt{65}}{2} $
| -0.09p-0.04(2-4p)=0.04(p-3)-0.23 | | (9x+13)^2=49 | | 33x^2-32x-1=0 | | 7+p=84 | | 2x^2+36x=-108 | | 12x^2-69x-18=0 | | 4x+6(x+7)+13=15 | | 48x^2+98x+4=0 | | 10-(5x-4)-3x=22 | | 8(x-5)=-3x-29 | | -13x+5(3x-7)+35=-8 | | 3x=5/11 | | 1/2(m+4)=m-2 | | 3y^2+9=93 | | (9/1)-(9/x)=1 | | 1/21=1/x+1/180-x | | 2x^2+14x-2352=0 | | (3x*2=238)*2 | | 3x*2*2=238 | | 14+3(3x+5)-7x=61 | | 7x+36=3x+11 | | 9=6(v+1)-(2v-) | | 9X-2(4x-7)+12=0 | | (3x^2-2x-4)(4x+3)=0 | | 12x+18=78 | | 3(x-24)+3(x-4)=18 | | 9x+3x=238 | | 30x-4(6x+5)-1=63 | | 4a-3(a-6)=4+2a | | (x+4)=20-x/2 | | 7x-×=12 | | 5x=40+5 |